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Nonequilibrium dynamics of the complex Ginzburg-Landau equation: Analytical results
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We present a detailed analytical and numerical study of nonequilibrium dynamics for the complex Ginzburg-
Landau equation. In particular, we characterize evolution morphologies using spiral defects. This paper is the
first in a two-stage exposition. Here, we present analytical results for the correlation function arising from a
single-spiral morphology. We also critically examine the utility of the Gaussian auxiliary field ansatz in
characterizing a multispiral morphology. In the next paper of this exposition we will present detailed numerical
results.
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I. INTRODUCTION

There have been many studies of pattern formation in
complex Ginzburg-Landau~CGL! equation, which has the
general form

]c~rW,t !

]t
5c~rW,t !1~11 ia!¹2c~rW,t !

2~11 ib!uc~rW,t !u2c~rW,t !. ~1!

In Eq. ~1!, c(rW,t) is a complex order-parameter field whic
depends on space (rW) and time (t); anda, b are real param-
eters. The CGL equation arises in diverse contexts, e
chemical oscillations@1#, thermal convection in binary fluids
@2#, multimode lasers@3#, etc. An overview of applications o
the CGL equation is provided in the review article by Cro
and Hohenberg@4#. The importance of the CGL equatio
stems from the fact that it provides a generic description
the slow modulation of oscillations in a spatially extend
system near a Hopf bifurcation@5#.

The CGL equation exhibits a rich range of dynamical b
havior with variation of the parametersa and b, and the
‘‘phase diagram’’ has been investigated~mostly numeri-
cally! by various authors@6#. In a large range of paramete
space, the emergence and interaction of spiral~and antispi-
ral! defects play an important role in determining the m
phology. Our present work focuses on characterizing pat
formation in the CGL equation using spiral-defect structur

We have studied nonequilibrium dynamics analytica
and numerically in the CGL equation witha50. Typically,
we consider the evolution morphology resulting from
small-amplitude random initial condition. There has been
tense research interest in such problems in the contex
far-from-equilibrium statistical physics—for reviews, se
@7,8#. The simplest problem in this class considers a hom
geneous two-phase mixture, which has been rendered
modynamically unstable by a rapid quench below the criti
coexistence temperature. An example of such a system
two-state ferromagnet~in zero magnetic field! at high tem-
peratures, which consists of a homogeneous mixture
‘‘up’’ and ‘‘down’’ spins. However, below the critical tem-
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perature, the system prefers to be in a spontaneously ma
tized state. The evolution of the system from the unsta
initial state is a complex nonlinear process. In appropri
dimensionless units, this evolution is described by the tim
dependent Ginzburg-Landau~TDGL! equation, i.e., Eq.~1!

with c(rW,t) real anda5b50. The system evolves by th
formation and growth of domains that are enriched in eit
up or down spins and are characterized by a time-depen
length scaleL(t). In the case of a pure and isotropic ferr
magnet, the domain growth law isL(t);t1/2, which is re-
ferred to as the Lifshitz-Cahn-Allen~LCA! law @9#. The pri-
mary mechanism for domain coarsening~or ‘‘phase-ordering
dynamics’’! is the curvature-driven motion and annihilatio
of interfaces~or defects!. Ohtaet al. @10# have formulated an
interface-dynamics approach to obtain an analytic form
the equal-time correlation function of a phase-ordering f
romagnet.

Next, let us consider the dynamicalXY model, which is
Eq. ~1! with c(rW,t) complex buta5b50. In this case, the
relevant defect structures~for dimensionalityd>2) are vor-
tices ~or vortex lines, etc.!, and domain growth is driven by
the motion and annihilation of vortices and antivortices. P
@11# obtained the time-dependent correlation function for
XY model, using singular-perturbation methods due to S
zuki @12#, Kawasakiet al. @13#, and Puri and Roland@14#.
Furthermore, Bray and Puri@15# and~independently! Toyoki
@16# obtained the time-dependent correlation function for
vector TDGL equation withO(n) symmetry ind dimensions
whenn<d, i.e., when topological defects are present.@The
dynamical XY model corresponds to the case withO(2)
symmetry.# The corresponding domain growth law is aga
the LCA law L(t);t1/2, with logarithmic corrections when
n5d @8,17#. To the best of our knowledge, there are
general results available for the case withn.d, where the
absence of topological defects makes it difficult to charac
ize the dynamical evolution.

The present two-stage exposition focuses on pha
ordering dynamics in the CGL equation witha50. Further-
more, the analytical and numerical results presented here
for the two-dimensional case, where spirals are point defe
However, the analytical results obtained by us can easily
extended to the case withaÞ0 andd>2, as the underlying
©2001 The American Physical Society06-1
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paradigm remains the same, i.e., spiral defects still determ
the morphology in large regions of parameter space and
higher dimensionality.

Following the work of Hagan@18#, Aransonet al. @19#,
and Chate and Manneville@6#, we briefly discuss the phas
diagram of thed52 CGL equation witha50. The limit b
50 corresponds to the dynamicalXY model, which is well
understood@11,8#. Without loss of generality, we conside
the case withb>0. For 0<b<b1 (b1.1.397@18#!, spirals
~which are asymptotically plane waves! are linearly stable to
fluctuations. Forb1,b<b2 (b2.1.82 @19,6#!, spirals are
linearly unstable to fluctuations, but the growing fluctuatio
are advected away, i.e., the spiral structure is globally sta
Finally, for b2,b, the spirals are globally unstable stru
tures and cannot exist for extended times@19#. Our results
correspond to the parameter regime withb<b2.

In this paper we present analytical studies of the corre
tion function resulting from single-spiral and multispir
morphologies. A later paper will present detailed numeri
results and compare them with the analytical results p
sented here. This paper is organized as follows. In Sec. II
obtain analytical results for the correlation function of
single-spiral morphology. In Sec. III, we critically examin
the utility of the Gaussian auxiliary field~GAF! ansatz@8#
for the characterization of a multispiral morphology. Secti
IV concludes this paper with a brief summary and discuss
of our analytical results.

II. CORRELATION FUNCTION FOR A SINGLE-SPIRAL
MORPHOLOGY

Figure 1 shows a typical evolution from a sma
amplitude random initial condition for thed52 CGL equa-
tion with a50 andb51. We have plotted constant-pha
regions in this figure, and it is clear that the evolving mo
phology is characterized by spirals and their interactio
~We use the term ‘‘spiral’’ for both spirals and antispira
unless specifically stated otherwise.! There is a characteristi
length scale, e.g., interspiral spacing or square root of inv
defect density, which we denote asL. Details of our simula-
tion techniques and comprehensive numerical results wil
provided in a future paper. Figure 1 is shown here only
motivate our subsequent discussion.

We would like to quantitatively characterize the evoluti
morphology shown in Fig. 1. The standard tool for this is t
correlation function of the order-parameter field@7,8#, which
we will define shortly.~The momentum-space structure fa
tor is obtained as the Fourier transform of the real-sp
correlation function.! At the simplest level of approximation
the morphology in the frames of Fig. 1 can be interpreted
consisting of disjoint spirals, each of sizeL. ~Of course, this
overlooks modulations of the order-parameter field at spi
spiral boundaries, but we will discuss that later.! Therefore,
it is obviously of relevance to compute the correlation fun
tion for a single-spiral solution.

The CGL equation witha50 has been studied by Haga
@18#, who found that there is a family of spiral solutions wi
the following functional form~in d52):
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c~rW,t !5r~r !exp@2 ib~12q2!t1 imu2 if~r !#, ~2!

where rW[(r ,u), q>0 is a constant which is determine
uniquely as a function ofb, andm is the number of arms in
the spiral. The cases withm.0 andm,0 correspond to a
spiral and antispiral, respectively. The limiting forms of th
functionsr(r ) andf(r ) are

r~r !→~12q2!1/2, f8~r !→q as r→`,

r~r !→arm, f8~r !→r as r→0, ~3!

where the constanta is determined by finiteness condition
Hagan presented explicit solutions forq(b) in the cases with
m51,2. We will focus on the case withm561, as only the
one-armed spirals are expected to be stable in the evolu
@18#. Figure 2 plots Hagan’s solution forq(b) ~with b
<1.5) in the case withm561. In the simple limitb50, we
have q50, and the spiral solution simplifies to the vorte
solution—for them561 vortex, the lines of constant phas
correspond to constantu. Spiral solutions for the genera
case witha,bÞ0 were discussed by Aransonet al. @19,20#.

We are interested in the correlation function for a on
armed spiral at large length scales, so we simplify Eq.~2! as

c~rW,t !.A12q2 exp@2 ib~12q2!t1 i ~u2qr !#, ~4!

FIG. 1. Evolution of a small-amplitude random initial conditio
for the complex Ginzburg-Landau equation witha50, b51. These
evolution pictures were obtained from an isotropic Euler discreti
tion of Eq. ~1!, implemented on anN2 lattice (N5256) with peri-
odic boundary conditions in both directions. The discretizat
mesh sizes wereDt50.01 andDx51.0. The pictures show region
of constant phaseuc5tan21(Im c/Rec), measured in radians
with the following coding: ucP@1.85,2.15# ~black!; uc

P@3.85,4.15# ~dark gray!; ucP@5.85,6.15# ~light gray!. The snap-
shots are labeled by the appropriate evolution times.
6-2
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where we have specialized to them51 case. The correlation
between pointsrW1 and rW2 is determined as

C~rW1 ,rW2 ,t !5Re$c~rW1 ,t !c* ~rW2 ,t !%

.~12q2!Re$exp@ i ~u12qr1!2 i ~u22qr2!#%

[C~rW1 ,rW2!. ~5!

The average correlation function is obtained by integrat
over the pointrW1, settingrW25rW11rW12, i.e.,

C~r 12!5
1

VE drW1C~rW1 ,rW11rW12!h~L2urW11rW12u!

5
~12q2!

V
ReE drW1 exp@ i ~u12u22qr1

1qurW11rW12u!#h~L2urW11rW12u!, ~6!

where V is the spiral volume. In Eq.~6!, we use the step
function h(x)51 ~0! if x>0 (x,0), which ensures that we
do not include points that lie outside the defect of sizeL.

For d52, the vector notationrW25rW11rW12 is equivalent to
r 2eiu25r 1eiu11r 12e

iu12. Thus we have

eiu25
r 1eiu11r 12e

iu12

@r 1
21r 12

212r 1r 12cos~u12u12!#
1/2

, ~7!

and

C~r 12!5
~12q2!

V
ReE

0

L

dr1r 1E
0

2p

du1

3
r 11r 12e

i (u12u12)

@r 1
21r 12

212r 1r 12cos~u12u12!#
1/2

3exp~2 iq$r 12@r 1
21r 12

2 12r 1r 12

3cos~u12u12!#
1/2%!h~L2urW11rW12u!. ~8!

We introduce the variablesu12u125u; x5r 1 /L; r 5r 12/L,
to obtain

C~r 12!5
~12q2!

p
ReE

0

1

dxxE
0

2p

du

3
x1reiu

~x21r 212xr cosu!1/2

3exp@2 iqL$x2~x21r 212xr cosu!1/2%#

3h@12~x21r 212xr cosu!1/2#, ~9!

where we have usedV5pL2 in d52. Thus, the scaling form
of the single-spiral correlation function isC(r 12)/C(0)
[g(r 12/L,q2L2). In general, there is no scaling with th
spiral size because of the additional factorqL. We recover
scaling only in the limitq50 (b50), which corresponds to
the case of a vortex. Essentially, spirals of different sizes
04620
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not morphologically equivalent because there is more ro
tion in the phase as one goes out further from the core.

Figure 3 plotsC(r 12)/C(0) vs r 12/L for the case with
b51 (q.0.306). These results are obtained by a direct
merical integration of Eq.~9!. We consider four different
values of L. The functional form in Fig. 3 exhibits near
monotonic behavior for small values ofL ~i.e., in the vortex
limit !; and pronounced oscillatory behavior for larger valu
of L, as is expected from the integral expression. Notice t
r 12/L<2—larger values ofr 12 correspond to the pointrW2
lying outside the defect.

Before we proceed, we should point out that the ima
nary part of the integral in Eq.~9! is nonzero, in general—
corresponding to a weak correlation between the real
imaginary parts of the order-parameter field. The imagin
part can also be obtained with relative ease. However,
will confine our discussion to the conventional definition
the correlation function in Eq.~5!. Let us next consider the
asymptotic behavior of the correlation function in the lim
r 12/L→0, althoughr 12 is still much larger than the size o
the defect corej.

A. Case with bÄ0

In the case withb50, we haveq50 and the integral
expression in Eq.~9! simplifies as

C~r 12!5
1

p
ReE

0

1

dxxE
0

2p

du
x1reiu

~x21r 212xr cosu!1/2

3h@12~x21r 212xr cosu!1/2#. ~10!

The behavior in ther→0 limit is of considerable interest a
it determines the large-wave-vector (k→`) behavior of the
structure factor@8#. In that case, we can neglect the st
function on the right-hand side~RHS! of Eq. ~10! as it only

FIG. 2. Plot ofq(b) vs b for the one-armed spiral solution o
the CGL equation witha50. ~Compare Fig. 5 of Ref.@18#.!
6-3
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provides corrections at the edge of the vortex defect. Th
after some algebra, we obtain the result

C~r 12!5
1

p (
n50

` GS n1
1

2D 2

n! 2
@An~r !2Bn~r !#, ~11!

where

An~r !5H 2

5
r 222r 2 ln r , n51

~4n11!

~n21!~2n13!
r 22

1

~n21!
r 2n, nÞ1,

~12!

and

Bn~r !5H 1

3
r 22r 2 ln r , n50

~2n11!~4n13!

2n~n11!~2n13!
r 22

~2n11!

2n~n11!
r 2n12, nÞ0.

~13!

This result is implicit in an earlier work of Bray and Huma
yun @21#, who focused upon the singular part of this fun
tion. In the limit r→0, the singular terms inC(r ) arise from
A1(r ) andB0(r ), and can be computed as

Csing~r 12!5
1

2
r 2 ln r , ~14!

FIG. 3. Correlation function for the one-armed spiral soluti
whenb51 (q.0.306). We plotC(r 12)/C(0) vs r 12/L for differ-
ent spiral sizesL510,25,50,100—denoted by the specified li
types. The results are obtained from a direct numerical integra
of Eq. ~9!.
04620
n,

which gives rise to a power-law tail in the structure fact
S(k).4pL2(kL)24, a result referred to as the ‘‘generalize
Porod law’’ @22,15#.

B. Case with bÅ0

We would like to undertake a similar asymptotic analy
in the general case withbÞ0. As we are interested only in
the limit r→0, we again discard the step function on t
RHS of Eq.~9!. In that case, we obtain

C~r 12!5
~12q2!

p
Re(

n50

`
~ iqL !n

n! E
0

1

dxxe2 iqLx

3E
0

2p

du~x1r cosu!~x21r 212xr cosu!~n21!/2.

~15!

We will separately consider the cases withn odd andn even.
~a! n odd. We designaten52p11 and consider the an

gular integral on the RHS of Eq.~15!:

Ĩ 2p11~x,r !5E
0

2p

du~x1r cosu!~x21r 212xr cosu!p

52xr2pE
0

p

duS 11
x2

r 2
1

2x

r
cosu D p

12r 2p11E
0

p

du cosuS 11
x2

r 2
1

2x

r
cosu D p

[2xr2pI 112r 2p11I 2 . ~16!

The integralsI 1 and I 2 are obtained from Gradshteyn an
Ryzhik @23#, and the consolidated result is

Ĩ 2p11~x,r !52pF (
k50

p S p

k D 2

x2k11r 2(p2k)1r 2 (
k50

[ ~p21!/2] S p

k D
3S p1k

k11D x2k11r 2k~x21r 2!p22k21G , ~17!

where@y# refers to the integer part ofy. The corresponding
contribution toC(r 12) is

C1~r 12!5
12q2

p (
n51,3,5, . . .

`

~21!(n21)/2
~qL!n

n!

3E
0

1

dxxsin~qLx! Ĩ n~x,r !. ~18!

The important feature here is that the above expression
C1(r 12) contains only powers ofr 2. Therefore, the overal
contribution toC(r 12) from this set of terms is analytic a
r→0. In the limiting caseq50 (b50), the above contribu-
tion is identically 0.

n

6-4
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~b! n even. Next, let us consider the case withn even. We
designaten52p, and the angular integral on the RHS of E
~15! is

Ĩ 2p~x,r !5E
0

2p

du~x1r cosu!~x21r 212xr cosu!~2p21!/2.

~19!

We introducer,5min(x,r ) andr.5max(x,r ) to obtain

Ĩ 2p~x,r !52r.
2p21E

0

p

du~x1r cosu!

3S 11
r,

2

r.
2

1
2r,

r.
cosu D ~2p21!/2

[2r.
2p21~xI31rI 4!. ~20!

The integralsI 3 and I 4 can be computed in terms of hype
geometric functions as follows@23#:

I 35pFS 1

2
2p,

1

2
2p;1;

r,
2

r.
2 D ~21!

and

I 45pS 1

2
1pD r,

r.
FS 1

2
2p,

1

2
2p;2;

r,
2

r.
2 D

2p
r,

r.
FS 1

2
2p,

1

2
2p;1;

r,
2

r.
2 D

5pS p2
1

2D r,

r.
FS 3

2
2p,

1

2
2p;2;

r,
2

r.
2 D . ~22!

We have simplified Eq.~22! using the standard identity@24#

~c2a21!F~a,b;c;z!1aF~a11,b;c;z!

5~c21!F~a,b;c21;z!, ~23!

with a51/22p, b51/22p, andc52.
Combining the expressions forI 3 and I 4, we obtain

Ĩ 2p~x,r !52pr.
2p21F xFS 1

2
2p,

1

2
2p;1;

r,
2

r.
2 D

1r
r,

r.
S p2

1

2DFS 3

2
2p,

1

2
2p;2;

r,
2

r.
2 D G .

~24!

The corresponding terms in the correlation function are
04620
C2~r 12!5~12q2! (
n50,2,4, . . .

`

~21!n/2
~qL!n

n! E
0

1

dxxcos~qLx!

3F2xr.
n21FS 12n

2
,
12n

2
;1;

r,
2

r.
2 D

1rr.
n22r,~n21!FS 32n

2
,
12n

2
;2;

r,
2

r.
2 D G

[~12q2!~T11T2!. ~25!

The singular contributions toC(r 12) as r→0 arise en-
tirely from C2(r 12), asC1(r 12) is analytic inr. A consider-
able amount of algebra is involved in extracting the singu
terms inT1 andT2. For the sake of brevity, we will sketch
only the broad features of the calculation here. We have

T152(
p50

`

~21!p
~qL!2p

~2p!!GS 1

2
2pD 2

3 (
m50

` GS 1

2
2p1mD 2

m! 2 E
0

1

dx cos~qLx!x2
r,

2m

r.
2(m2p)11

,

~26!

where we have used the standard expansion for the hy
geometric function@24#. The integral on the RHS of Eq.~26!
can be written as

I 55
1

r 2(m2p)11E0

r

dx cos~qLx!x2m12

1r 2mE
r

1

dx cos~qLx!x22(m2p)11. ~27!

The first term on the RHS of Eq.~27! is analytic asr→0.
The second term contributes singular terms only ifm>p
11, yielding the result

I 55~21!m2p
~qL!2(m2p21)

@2~m2p21!#!
r 2m ln r 1~analytic terms!.

~28!

Replacing this in the expression forT1, some algebra yields

T15 (
p50

`

(
m50

`

~21!p1m11
~qL!2(p1m)

~2p!! ~2m!!

3

GS 3

2
1mD 2

GS 1

2
2pD 2

~m1p11!! 2

r 2(m1p11) ln r

1~analytic terms!. ~29!

A similar analysis forT2 yields
6-5
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T25 (
p50

`

(
m50

`

~21!p1m
~qL!2(p1m)

~2p!! ~2m!!

3

GS 1

2
1mD 2

GS 1

2
2pD 2

~m1p!! 2

~2m11!

~m1p11!
r 2(m1p11) ln r

1~analytic terms!. ~30!

We can combine the singular terms fromT1 and T2 to
obtain the singular part ofC(r 12) as follows:

Csing~r 12!5
1

2 (
p50

`

(
m50

`

~21!p1m
~qL!2(p1m)

~2p!! ~2m!!

3

GS 1

2
1mD 2

GS 1

2
2pD 2

~m1p11!! 2

3~2m11!~2p11!r 2(m1p11) ln r . ~31!

We notice that the leading-order singularity is unchang
and continues to beCsing(r 12). 1

2 r 2ln r, as in the case with
b50. However, there is now a sequence of subdomin
singularities proportional to (qL)2r 4 ln r, (qL)4r 6 ln r, etc.,
and these become increasingly important as the length s
L increases. These subdominant terms inCsing(r 12) are remi-
niscent of the leading-order singularities in models w
O(n) symmetry, wheren is even@8,21#. Of course, in the
context ofO(n) models, these singularities arise only forn
<d as there are no topological defects unless this condi
is satisfied. In the present context, all these terms are alre
present ford52. The implication for the structure-factor ta
is a sequence of power-law decays withS(k)
;(qL)2(m21)Ld/(kL)d12m, where m51,2, etc. Thus, al-
though the true asymptotic behavior ind52 is still the gen-
eralized Porod tailS(k);L2(kL)24, it may be difficult to
disentangle this from other power-law decays.

The results presented in this section are of relevanc
determining the small-distance behavior of the correlat
function, or the large-wave-vector behavior of the struct
factor. This is because small length scales only probe in
vidual defects. Nevertheless, as our forthcoming numer
results will demonstrate, the single-spiral correlation fun
tion agrees with the correlation function for multispiral mo
phologies~obtained numerically! over a considerable rang
of distances. For even larger length scales, we have to
plicitly account for the modulation of the order parameter
defect-defect boundaries. We address this problem in
next section of this paper.

III. UTILITY OF GAUSSIAN AUXILIARY FIELD ANSATZ
FOR A MULTISPIRAL MORPHOLOGY

The evolution in Fig. 1 is characterized by a morpholo
with multiple spirals and antispirals. Initially, spirals and a
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tispirals are attracted to each other and annihilate, ther
decreasing the defect density and increasing the interde
distance~or characteristic length scale!. When the defect
density is large, the spiral sizes are small and spirals
similar to vortices. Therefore, we expect an initial coarsen
regime which is analogous to that for theXY model—in
terms of both the domain growth lawL(t);(t/ ln t)1/2 @25#
and the morphology as characterized by the correlation fu
tion @11,15#. This is in accordance with our numerical sim
lations, as we will discuss in a future paper. Distinctive
fects of spirals are seen for length scalesL.Lc , whereLc
;q21—clearly, Lc→` as q→0 ~or b→0). Furthermore,
there is a repulsive spiral-antispiral potential beyond a c
tain distance, which prevents the annealing of all defe
@4,20#. Thus, the evolving system ‘‘freezes’’~in a statistical
sense! into a multispiral morphology. This should be con
trasted with the case of the dynamicalXY model @a5b
50 in Eq. ~1!#, where we expect the zero-temperature s
tem to continue coarsening ast→`.

A common theme in the characterization of dynamic
evolution with a nonconserved order parameter is the in
duction of a Gaussian auxiliary field@8,10,15,26#. Essen-
tially, the GAF ansatz takes the formc(rW,t)5F@m(rW,t)#,
where the functionF@m# is determined from the defec
structure, and the complex fieldm ~which measures the lo
cation relative to the defect core! is assumed to obey a
Gaussian distribution. The zero crossings of the fieldm cor-
respond to the location of defect cores. The GAF ansatz
ables a straightforward computation of the correlation fu
tion for the fieldc(rW,t). However, the analytical justification
for the GAF ansatz is meager and its primary virtue appe
to be that it works rather well in some situations@8#.

Let us examine the utility of the GAF ansatz in th
present context. The appropriate form of the ansatz for
CGL equation in the regime where the spiral structures
well developed is~using Hagan’s solution for the spiral de
fect!

c~rW,t !.
A12q2m~rW,t !

A12q21um~rW,t !u2
exp$2 i @vt1qum~rW,t !u#%,

~32!

wherev5b(12q2); and we takeucu.umu near the defect
core (umu→0), in accordance with Hagan’s solution. Th
field m (5m11 im2) is assumed to obey a Gaussian dist
bution with

P~mi !5
1

A2ps2
expS 2

mi
2

2s2D , i 51,2, ~33!

where s25^mi(rW,t)2&; and the fieldsm1(rW,t) and m2(rW,t)
are taken to be statistically independent of each other.

Our numerical results show that the GAF ansatz in E
~32! is reasonable in the vicinity of defects. However, it
inappropriate for defect-defect boundaries, where the ord
parameter amplitudeucu is often larger thanA12q2. This is
demonstrated in Fig. 4, which replots Fig. 1 with defect
6-6
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cations marked by asterisks and regions whereucu
.A12q2 marked in gray. As discussed before, for ea
times ~e.g., t525), the system evolution is governed by t
interaction of vortices. Thus, the appropriate GAF ans
should have max(ucu)51, as in the case of theXY model.
For late times~e.g.,t51000), the system has well-develope
spirals. Nevertheless, the GAF ansatz for the order-param
field is obviously inappropriate for large regions of space
these parameter values. For other values ofb, the same gen-
eral arguments apply although there are changes in the c
over time to spiral-mediated growth, and the fraction of s
tial region where the GAF ansatz is unreasonable.

Let us examine the validity of the GAF ansatz in regio
whereucu,A12q2. We can simplify the ansatz in Eq.~32!
by defining the variablem85me2 if, wheref5vt1qumu.
Then we have the corresponding probability distribution
~say! m18 as

P8~m18!5E
2`

`

dm1E
2`

`

dm2d~m182m1 cosf

2m2 sinf!P~m1!P~m2!

5
1

2ps2E2`

`

dm1E
2`

`

dm2d~m182m1 cosf

2m2 sinf!expS 2
m1

21m2
2

2s2 D . ~34!

As usual, we transform (m1 ,m2)→(umu,u) to obtain

FIG. 4. Evolution shown in Fig. 1 replotted to clarify the utilit
of the GAF ansatz in this context. The asterisks denote spiral
ters, and regions whereucu.A12q2 are shaded gray.
04620
z

ter
t

ss-
-

r

P8~m18!5
1

2ps2E0

`

dumuumuexpS 2
umu2

2s2 D
3E

0

2p

dud„m182umucos~u2f!…. ~35!

Because of the periodicity of the function cos(u2f), the
phase factorf is inconsequential and

P8~m18!5
1

A2ps2
expS 2

m18
2

2s2D , ~36!

and a similar distribution also applies for the variablem28 .
Thus, we have the appropriate GAF ansatz~dropping

primes! as follows:

c~rW,t !5
A12q2m~rW,t !

A12q21um~rW,t !u2
, ~37!

where the variablesm1(rW,t) and m2(rW,t) @m(rW,t)5m1(rW,t)
1 im2(rW,t)# are Gaussian and independent of each oth
The inverse relation between the variablesc andm is

m~rW,t !5
A12q2c~rW,t !

A12q22uc~rW,t !u2
. ~38!

We want to examine the validity of the GAF ansatz n
merically @27,28# in the context of the evolution depicted i
Fig. 1 ~or Fig. 4!. The appropriate parameter values areb
51 andq.0.306 @18# ~see Fig. 2!. In Fig. 5, we plot the
single-variable distribution for the fieldm1(rW,t), obtained di-
rectly from our simulation of the CGL equation using E
~38! in regions whereucu,A12q2. The data in Fig. 5 are
obtained as an average over five independent runs forN2

lattices, withN5512.~Details of our simulation will be pro-
vided in a subsequent paper II.! Figure 5~a! is a plot of
P(m1) vs m1 from four different times—corresponding t
the evolution pictures shown in Fig. 1. In Fig. 5~b!, we have
scaled variables and superposed the data forP(m1)s vs
m1 /s, wheres is obtained from the best fit of the numeric
data to the functional form in Eq.~36!. The data collapse
onto a single master curve, which is reasonably appro
mated by the Gaussian formP(x)5(1/A2p)e2x2/2, denoted
as a solid line in Fig. 5~b!.

Figure 5 was obtained by focusing only on regions wh
ucu,A12q2, which is essentially equivalent to considerin
disjoint spirals, for which the correlation function has a
ready been obtained in Sec. II. We have examined variouad
hoc methods of improving the GAF ansatz in Eq.~37!. For
example, one could set the saturation amplitude of the o
parameter to its maximum value (ucusat.1 for Fig. 1!, rather
than ucusat5A12q2. Figure 6 plots the resultant probabilit
distributions P(m1) vs m1 with ucusat51. For early times
(t525), the distribution has a Gaussian form, as expec
from our analogy with theXY model. However, with the

n-
6-7
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emergence of well-formed spirals, the distribution develop
double peak and is clearly non-Gaussian.

We have also studied some other possible ways of re
fying the GAF ansatz. We find that thesead hocapproaches
invariably result in non-Gaussian distributions for the aux
iary field. Perhaps a more honest approach should be b

FIG. 5. ~a! Plot of data forP@m1(rW,t)# vs m1(rW,t) from four
different timest525,50,100,1000—denoted by the symbols show
The parameter values are identical to those in Fig. 1. We use

~38! to obtain data form1(rW,t) directly from the order-paramete
field in our numerical solution of the CGL equation—consideri
only regions whereucu,A12q2. The data were obtained as a
average over five independent runs forN2 lattices (N5512). ~b!

Scaled plot of data from~a!. We superpose data forP@m1(rW,t)#s(t)

vs m1(rW,t)/s(t), wheres(t) is obtained from the best fit of the
numerical data to a Gaussian distribution. The solid line refers

the Gaussian functionP(x)5(1/A2p)e2x2/2.
04620
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on the order-parameter field for spiral-spiral pairs@20# as a
function of two independent auxiliary fields—referring
distances from the centers of the two spirals. We are p
ently studying the utility of such an approach for charact
izing multispiral morphology.

IV. SUMMARY AND DISCUSSION

Let us conclude this paper with a brief summary and d
cussion of our results. We have undertaken a detailed a
lytical and numerical investigation of nonequilibrium dy
namics in a special case of the complex Ginzburg-Lan
equation. Our results are described in a two-stage exposi
This paper constitutes the first stage of this exposition,
describes analytical results for the time-dependent corr
tion function. Our analytical arguments rely on the signi
cance of spiral-defect structures in determining the morph
ogy and evolution of the CGL equation from a random init
condition.

In this paper, we describe results for the exact correlat
function C(r 12) of a single spiral defect of sizeL, and un-
dertake its asymptotic analysis in the limitr 12/L→0 but
r 12/j@1, wherej is the size of the defect core. We find th
there is a sequence of singularities in this limit, which a
reminiscent of singularities for defects withO(n) symmetry,
where n is even. However, the dominant singularity
r 12/L→0 corresponds to the case of vortex defects, as
pected. The implications for the large-wave-vector tail of t
structure factor are also discussed.

We also investigate the validity of the Gaussian auxilia
field ansatz in the context of multispiral morphologies. F
early times (L,Lc;q21), domain growth in the CGL equa

.
q.

o

FIG. 6. Plot of data forP@m1(rW,t)# vs m1(rW,t) from times t
525,50,100,1000—denoted by the symbols shown. The param
values and statistical details are identical to those for Fig. 5~a!. Data

for m1(rW,t) are obtained directly from the numerical data f

c(rW,t), using Eq.~37! with ucusat5A12q2 replaced byucusat51.
6-8
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tion is analogous to that for theXY model, whose domain
growth law and correlation function are well understood@8#.
For later times, we find that the simple GAF ansatz is
reasonable, as it is unable to account for order-param
modulations in the defect-defect boundaries. We have
tempted ad-hoc improvements of the GAF ansatz but th
invariably result in non-Gaussian distributions for the cor
sponding auxiliary field. We are presently investigating t
possibility of formulating a generalized GAF ansatz in ter
of the order-parameter field for a spiral-spiral pair.

More generally, the utility of the GAF ansatz arises fro
the summation over phases from many defects, which res
in a near-Gaussian distribution for the auxiliary field. Ho
ever, in the present context, the shocks between spirals
fectively isolate one spiral region from the influence of oth
regions. As a matter of fact, the waves from other spir
decay exponentially through the shock and the phase
point is always dominated by the nearest spiral. Theref
we expect that the correlation function will be dominated
the single-spiral result—in accordance with our numeri
results.
,
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In a future paper we will present detailed numerical
sults for phase-ordering dynamics in the CGL equation.
particular, we will focus upon the crossover from vorte
mediated dynamics~at early times! to spiral-mediated dy-
namics ~at late times!. Furthermore, we will compare ou
numerical results for the correlation function of the orde
parameter field with the analytic form for a single-spiral d
fect presented in this paper.

Before we conclude this paper, it is worth stressing t
the results presented are easily adaptable to the general
of the CGL equation witha,bÞ0. Again, the evolving mor-
phology in a large region of parameter space is character
by the presence and annihilation of spirals and antispi
@6#. The results of the present paper apply directly in th
case also, with minor modifications in the functional form
the spiral solution in Sec. II.
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